Serwis informacyjny
Moment pędu w rozszczepieniu jąder atomowych opisany
Data dodania: poniedziałek, 1 marca 2021, autor: nuclear.pl
Kiedy zbyt mocno nadmuchany balon pęka, to jego kawałki odlatują w przeciwne strony, wykonując przy tym przeróżne powietrzne ewolucje. Podobnie przebiega proces rozszczepienia jądra atomowego. Moment pędu w rozszczepieniu jąder atomowych opisali naukowcy w czasopiśmie „Nature”. Wśród nich są także przedstawiciele Wydziału Fizyki Uniwersytetu Warszawskiego i Instytutu Fizyki Jądrowej PAN w Krakowie.
Moment pędu w rozszczepieniu jąder atomowych
Kiedy zbyt mocno nadmuchany balonik pęka, to jego kawałki odlatują w przeciwne strony, wykonując przy tym przeróżne powietrzne ewolucje. Podobnie przebiega proces rozszczepienia jądra atomowego, w którym ulega ono podziałowi na dwie części, czemu towarzyszy emisja kilku neutronów. Wydzielona w tym procesie energia objawia się nie tylko w postaci energii kinetycznej powstałych fragmentów, ale także w formie rotacji i innych wzbudzeń jądrowych. Jednym z towarzyszących zjawisk jest emisja kwantów promieniowania gamma, które unoszą nie tylko nadmiar powstałej energii, ale i moment pędu (czyli hamują obroty).
W rozszczepiającym się systemie początkowy moment pędu wynosi praktycznie zero i mechanizm jego powstawania stanowił niezbadaną eksperymentalnie zagadkę od ponad 40 lat. W szczególności, nie było jasne, czy pojawia się on przed, czy po podzieleniu się jądra atomowego? Do przełomowego rozstrzygnięcia tej kwestii doprowadziła seria pomiarów przeprowadzonych w ośrodku badawczym Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJC) w Orsay we Francji.
Współpraca grupy Nu-ball
Uzyskane rezultaty, opublikowane w czasopiśmie „Nature”, są efektem współpracy fizyków z 37 ośrodków naukowych (z 16 krajów), w tym także z Wydziału Fizyki Uniwersytetu Warszawskiego i Instytutu Fizyki Jądrowej PAN w Krakowie, tworzących grupę badawczą Nu-ball. Istotną rolę odgrywają w niej naukowcy z laboratorium IJC, w którym w 2018 roku na układzie ALTO przeprowadzono ponad 1200 godzin pomiarów z wykorzystaniem skolimowanej wiązki neutronów szybkich. Neutrony trafiały na tarcze zawierające materiały rozszczepialne 238U lub 232Th i indukowały rozszczepienie jąder atomowych. W dodatkowym pomiarze zbadano także spontaniczne rozszczepienie 252Cf. Promieniowanie gamma, towarzyszące reakcjom rozszczepienia się jąder, było rejestrowane przez układ około 200 detektorów. Udało się zrekonstruować kaskady przejść jądrowych w około 30 fragmentach rozszczepienia.
Osobne źródła momentu pędu
Wyniki analizy własności emitowanego promieniowania jednoznacznie wskazały na brak korelacji pomiędzy momentami pędu powstałych fragmentów we wszystkich zbadanych przypadkach. Oznacza to, że w przeciwieństwie do większości dotychczas stosowanych modeli rozszczepienia, źródła momentu pędu są osobne i musi on powstawać po rozszczepieniu. Co więcej, pomiędzy powstającymi fragmentami nie ma przekazu informacji. Uzyskane wyniki pozwoliły zaproponować mechanizm opisujący powstawanie momentu pędu w rozszczepieniu. Zakłada on, że podczas rozszczepienia się jądra atomowego najpierw powstaje przewężenie, a następnie podział na dwa, niezależne układy o bardzo wydłużonym kształcie. Nowe systemy dążą do kształtu kulistego, a energia związana z deformacją przekształca się na wzbudzenie powstałych jąder atomowych. Zaproponowany przebieg rozszczepienia tłumaczy statystyczny charakter wzbudzeń, niezależny dla każdego z fragmentów.
Rezultaty uzyskane przez fizyków z grupy Nu-ball mają zastosowanie w modelowaniu reaktorów jądrowych, w którym istotną składową transportu ciepła stanowi promieniowanie gamma emitowane przez fragmenty rozszczepienia oraz krotność jego występowania. Są one również istotne w planowaniu eksperymentów nastawionych na wytworzenie nowych superciężkich pierwiastków oraz egzotycznych nuklidów o dużym nadmiarze neutronów.
Artykuł „Angular momentum generation in nuclear fission” ukazał się 24 lutego. Jego współautorami są dr hab. Agnieszka Korgul, dr hab. Krzysztof Miernik, dr Victor Gauadilla oraz doktorantki Monika Piersa oraz Ewa Adamska z Wydziału Fizyki UW a także dr inż. Natalia Cieplicka-Oryńczak, prof. dr hab. Bogdan Fornal, dr inż. Łukasz Iskra oraz doktorantka Barbara Wasilewska z Instytutu Fizyki Jądrowej PAN w Krakowie.